What is memory?

- Memory: processes involved in retaining, retrieving, and using information about stimuli, images, events, ideas, and skills after the original information is no longer present.

- Encoding, Storage, Retrieval

- Atkinson & Shiffrin: Modal model of memory

 - Modal Model of Memory
 - Atkinson and Shiffrin (1968)
 - Control processes: active processes that can be controlled by the person
 - Rehearsal
 - Strategies used to make a stimulus more memorable
 - Strategies of attention
Control process: active processes that can be controlled by the person

Rehearsal Strategies used to make a stimulus more memorable

Strategies of attention

Sensory Memory

• How big is sensory memory?

• Sperling (1960)
 – array of letters flashed quickly on a screen
 – participants asked to report as many as possible
 – CogLab: Partial report demonstration

Sensory Memory

• Whole report: participants asked to report as many as could be seen
 • Report average of 4.5 out of 12 letters

• Partial report: participants heard tone which told them which row of letters to report
 • Report average of 3.3 out of 4 letters
Sensory Memory

- Short-lived sensory memory registers all or most information that hits our visual receptors
 - Information decays very quickly
- Brief sensory memory
 - Iconic memory
 - Visual icon
 - Corresponds to sensory memory

Duration of short term memory

-CogLab: Brown-Peterson

- Read three letters, then a number
- Begin counting backwards by 3’s
- After a set time, recall three letters

Short Term Memory

- 3 sec delay → recall rate 80%
- 18 sec delay → recall rate 10%

Why?

- Proactive interference (PI):
 - Information learned previously interferes with learning new information
- How come?
 - Some semantic information intervene short-term memory
Short Term Memory

- Short term memory, when rehearsal is prevented, is about 15-20 seconds.

How is information coded in STM?

- Auditory coding
 - sound
- Visual coding
 - appearance
- Semantic coding
 - meaning

- Coglab: demonstration
 - Irrelevant speech

- People encode auditory information for STM.
 - But other studies showed that people also use visual and semantic information.

- (Q3) Is there a way to increase the ability to remember things that have just happened?

- Capacity of short term memory
 - CogLab: Memory span
 - Digit span: how many digits a person can remember
 - Typical result: 5-8 items
 - But what is an item?
• Chunking – small units can be combined into larger meaningful units
 – Chunk: collection of elements strongly associated with one another but weakly associated with elements in other chunks

• Memory list
 1 4 5 6 2 0 8 3 9 7 → you remember 7 or so digits
 H L Q T U Z X P S M N → you remember 7 or so letters
 Jane, Ken, Steve, Kate, Mary, Brad, Tom, Ellen, Les, Pete, Jun, Susan, → you remember 7 or so names

Not absolute digits or letters that you remember but groups (chunks) of things that you remember.

Chunking
• Chunking in terms of meaning improve short-term memory tremendously.
• Chess master vs. beginner
 – memorize chess pieces positioned for a real chase game for 5 seconds
 – reproduce the arrangement shortly after.

(a) The chess master is better at reproducing actual game positions.
(a) The chess master is better at reproducing actual game positions.

(b) Master’s performance drops to level of beginner when pieces are arranged randomly.

Ericcson et al. (1989)
- S.F. had an initial digit span of 7
 1 4 6 8 3 5 9
- After 320 one-hour training sessions for 2 years,
 - S.F. could remember up to 79 digits
 7 9 3 0 5 1 5 7 9 3 9 0 5 3 5 0 5 2 1 4
 6 3 2 8 0 5 4 3 2 1 0 6 3 4 3 7 8 0 2 4
 5 9 2 3 5 7 1 8 0 6 3 0 3 5 6 7 0 2 5 8
 3 3 5 7 0 7 3 2 9 2 4

How did he do?
- Chunking:
 - Combing the numbers with meaningful sets
 - 3 4 9 2 → 3 hr 49 min 2 sec
 - 8 1 1 0 → almost emergency (9 1 1)
 - 8 9 3 → very old man, 89.3

(Q4) Is there a relationship between memory capacity and intelligence?

What is short-term memory (STM) for?
- Is STM for transferring information to long-term memory (LTM)?
- Is it a passive terminal for information transfer?

Working memory: Conceptual Background
Questions:
- From New York to Pittsburgh, it takes about 7 hours and 30 minutes by car. From Pittsburgh to Chicago, it takes about 8 hours and 30 minutes by car. How long does it take from New York to Chicago, if you want to drive through Pittsburgh?

$8 \cdot 9 - 10 + (2 \cdot 6) = ?$

Summarize the following paragraph.

- Last month, some major banks announced minor changes in their overdraft policies. They were hoping to head off new federal regulation of a business that is designed to ambush ordinary people and siphon off as much money as possible. We were unimpressed with those steps at the time, and a recent study by a nonpartisan research group confirms that the banks have grown addicted to the easy billions they reap from these policies. They clearly will not renounce them unless the government forces them to do so.

Questions
- How did you solve these problems?

Temporary storage of information
- How do we solve these questions?
- In order to answer these questions, you need temporary storage of information.
 - STM → working memory
- Working memory → a buffer for information manipulation

Computer metaphor
- Working memory → Random Access Memory (RAM)
 - 128MB
- Long-term memory
 - Hard disk, Zip disk, USB disk
- After shutting down your computer, you lose the information stored in RAM.
- But the information stored in your hard disk is OK.
Do we have RAM (Working memory)?
• Do we have working memory as we have RAM in our computer?

Task 1
– Find the answer to the following question as quickly and accurately as possible.

Who came first?
Who came second?

Task 2:
– Find the answer to the following question as quickly and accurately as possible. While you are looking for the question, please keep saying “the-the-the-the.....”

Tom arrived after Steve. John came before Steve. Mike arrived before John.
Who came first?
Who came second?

Baddeley’s working memory
• short-term memory is not just for transferring information to LTM.
• It is for a working buffer (to manipulate information) for complex cognitive tasks.

Working Memory
• Working memory (WM): limited capacity system for temporary storage and manipulation of information for complex tasks such as comprehension, learning, and reasoning

Working Memory
• Working memory differs from STM
 – STM is a single component
 – WM consists of multiple parts
Working Memory
• Working memory differs from STM
 – STM holds information for a brief period of time
 – WM is concerned with the manipulation of information that occurs during complex cognition

The phonological loop
Phonological similarity effect
– Letters or words that sound similar are difficult to memorize.
Demo: Which is more difficult?
• Read the following letters, look away and then count up to 15, and recall
 – g, c, b, t, v, p

• Read the following letters, look away and then count up to 15, and recall
 – f, l, k, s, y, g

Word-Length Effect
– Memory for lists of words is better for short words than for long words
– It takes longer to rehearse long words and to produce them during recall

Demo: Which is more difficult?
• Read the following letters, look away, count up to 15, and recall.
 – Beast, bronze, wife, golf, inn, limp, dirt, star

• Read the following letters, look away, count up to 15, and recall.
 – Alcohol, property, amplifier, officer, gallery, mosquito, orchestra, bricklayer

The word-length effect
– It takes longer to rehearse long words.
– That’s why it is difficult to memorize.

Articulatory Suppression
– Prevent one from rehearsing items to be remembered
 • Reduces memory span
 • Eliminates word-length effect
 • Reduces phonological similarity effect for reading words

Demo: Which is more difficult?
• Read the following letters while repeating the word “the” out loud (the, the, the…), look away, and recall.
 – Beast, bronze, wife, golf, inn, limp, dirt, star
The word-length effect disappears.

Demo: Which is more difficult?

- Memorize the sentence below, and without looking at it, consider each word and say “yes” if it is a noun and “no” if it isn’t a noun.
 - John ran to the store to buy some oranges.

Why?

- Visualize the F on the right. Look away, and while visualizing F, start at the upper left corner (the one marked with the “*) and moving around the outline of the F in a clockwise direction in your mind.
- Point to Y for an outside corner, and N for an inside corner.
Demo: Which is more difficult?

• Visualize the F on the right. Look away, and while visualizing F, start at the upper left corner (the one marked with the *) and moving around the outline of the F in a clockwise direction in your mind.

• Say “yes” for an outside corner, and “no” for an inside corner.

Why?

The central executive

• Switching attention

The central executive

• It coordinates the operation of the phonological loop and visuospatial sketch pad.
• It suppresses irrelevant information and maintain relevant information
 – the Stroop task.
 – The Raven test

Read aloud each word

- Green
- Red
- Yellow
- Yellow
- Red
- Green
- Orange
- Blue
- Violet

Read aloud the color of each word

- Green
- Red
- Yellow
- Yellow
- Red
- Green
- Orange
- Blue
- Violet
Raven test: (Carpenter, Just, & Shell, 1990)

- Marshmallow test (5:15)
 - http://www.youtube.com/watch?v=amsgeYOk--w

- Phineas Gage

- Short term memory loss (9:45min)
 - http://www.youtube.com/watch?v=wDNDRDJy-vo&feature=related