MOLECULAR CELL BIOLOGY: FALL SEMESTER, 2009

BIOL 213 SYLLABUS

www.tamu.edu/summerslab/

I. Basic Information about the Course and Instructor:

Course name: Molecular Cell Biology (Honors)
Course number: BIOL 213
Section number: 200
Number of credits: 3 cr.
Days and times of class meetings: Mon./Wed./Fri., 9:10-10:00 AM
Room number and location of meetings: Room 123 HPCT
Instructor name: Dr. Max D. Summers, Distinguished Professor
Office location: Room 324, Minnie Belle Heep Bldg.
Office hours: Tuesday 4:00-5:00 p.m. for walk-in; or for an appointment contact: 847-9036 or Email m-summers@tamu.edu
Office telephone number: (979) 847-9036
Dept./College office telephone number: Dept. Entomology, (979) 845-2516
Fax number: (979) 845-6305
E-mail address: m-summers@tamu.edu

II. Course Description:

Provide a strong background in the cellular and molecular aspects of biology with particular emphasis on eukaryotes (From: Texas A&M University Undergraduate Catalog, 2008-2009: http://www.tamu.edu/admissions/catalogs). Student may not take concurrently with, or after the completion of BIOL 413.
Prerequisites: BIOL 112; CHEM 227 or concurrent enrollment.

III. Course Rationale:

Purpose of the course:

To: a) provide an opportunity for the student to distinguish the molecular basis of cellular processes and interrelationships in living systems with an emphasis on eukaryotic systems; b) teach the student the introductory “language” and “dictionary” of molecular cell biology; c) provide fundamental insights for the student to initiate and further develop the process of inquiry-based learning and discovery in science; d) establish the basic skills to allow the student to explore and assess their interests in the fields of molecular and cellular sciences for career opportunities; e) provide the student with fundamental knowledge to facilitate the systematic process of problem solving in molecular and cell biology.

The major in Molecular Cell Biology provides an appropriate foundation for a career in molecular biology and genetics,
biotechnology, genetic engineering, M.D./Ph. D. programs or basic biological study and research.

Honors MCB 213 can be a special section of the regularly offered MCB 213. It is designed to explore some of the course subject matter in unusual depth for sophomore students. Dependent upon the student's background and interests the subject matter is presented to encourage a variety of inquiry-based activities such as developing initiative, creativity, independent thinking, information synthesis and problem solving skills. Interchange of ideas between and among students is encouraged.

How and where course fits into the students' degree program:
See outline of the Molecular and Cell Biology Degree Plan (Bachelor of Science) http://www.tamu.edu/admissions/catalogs/

Benefit to students taking the course:
The students will learn the basic details of molecular and cellular processes not only for a practical understanding, but to explore the students' interests and potential for continued or advanced studies. Course content will give the student an introductory and general background of molecular systems in cells and their significance in biology, medicine and agriculture.

IV. Prerequisites/Corequisites:

Prerequisites:
BIOL 112, Introductory Biology; CHEM 227, Organic Chemistry I, or concurrent enrollment.

Specific knowledge and skills for course success:
The student should have a fundamental knowledge of general biology and of the structure and chemistry of organic molecules which are the fundamental structural units of macromolecules. This is available in BIOL 113, 114 (Introductory Biology), BIOL 123, 124 (Introductory Lab) and Chem 227 (Organic Chemistry I). The student will be expected to learn, know and describe the basic chemical and molecular structures of selected major structural macromolecular components of cells (nucleic acids, proteins, lipids and carbohydrates); and to distinguish how these molecules and macromolecules interact and function in cellular system(s). The student will be expected to have or develop the appropriate skills to communicate (write, discuss, analyze, evaluate and debate) using the language of introductory molecular cell biology.

V. Course Goals/Objectives:

What students should learn from the course:
The student should learn the elements of: a) the molecular basis of cellular function; b) why there is molecular specificity of structure and function for certain cellular/tissue systems; c) why the living process requires a significant amount of energy in a biologically usable form; d) how biologically usable forms of energy are used and recycled; e) the molecular consequences of errors in metabolism, gene structure or function; f) how molecules and macromolecules interact in cells and eukaryotic systems to carry out specific functions and form cellular structures; g) the
basic techniques to study macromolecule structure, function and interactions in cells and organelles; h) how gene expression and cellular functions are regulated in cells.

The student is expected to develop the skills to communicate details of molecular biology both verbally and graphically in answers to discussion questions on exams, on specific problem(s) as assigned, and during discussions in class and review sessions.

Instructor and student objectives;

Instructor: The instructor will strive to: a) identify and communicate details, facts and an overview of molecular and cellular systems. b) present the “language” and definitions of molecular cell biology and inform the students of how to access additional information; c) inform students of some of the experimental approaches used to study and explore molecular and cellular biology; c) expose the student to the fundamentals of scientific discovery and approaches to problem solving and information synthesis. The professor articulates and sets the standards for evaluation of student performance.

Students: The student should be prepared to devote the time required to comprehend and communicate the basic language and dictionary of molecular cell biology. The student will be expected to communicate these concepts both verbally and in writing using the scientific language of the field. The student should be prepared to distinguish and compare molecular structures, cellular and molecular processes and through knowledge of these molecular structures and functions, compare and describe how these structures interact and function in living systems. Ultimately successful students should be equipped with the basic skills that will allow them to develop and initiate the process of critical thinking, synthesis and problem solving in the molecular cell sciences. Through this process the student should learn to be more insightful and innovative in the application of new knowledge.

The student should be prepared to commit to the personal discipline and amount of time needed to study, comprehend and communicate the science of molecular cell biology. As such, in order to detail and describe molecules, molecular process and molecular interactions, the student may be required to develop new study habits appropriate to the subject matter of the course. To be prepared to succeed and excel in this course the student should understand that excelling in the knowledge of molecular cell biology requires extra study and practice time similar to that required to be proficient or excel in sports or music.

VI. Resources:

Recommended readings or Internet Assignments: As assigned.

Other materials: Handouts as appropriate to lectures are posted on Professor Summers' web page, click on "Teaching."

Location where text may be obtained: MSC Aggie Bookstore

VII. Conduct of Course:

Instructional techniques used in the course: Lectures with overheads, handouts, etc, using the overhead projector; special problem sets; when possible student led discussion on special topics.

The handouts used in this course are copyrighted. By “handouts” the professor means all materials generated for this class, which include but are not limited to syllabi, quizzes, exams, lab problems, in-class materials, review sheets, and additional problem sets. Because these materials are copyrighted, one does not have the right to copy the handouts, unless the professor expressly grants permission.

Leaving the room during lectures and exams: The student is required to ask permission of the professor if the student needs to leave the classroom during lecture. If this need is frequent and there is a medical problem, a doctor’s statement is required clearly stating the medical problem to the Professor. This will be required before any exam is taken or early in the conduct of the course so the Professor can make arrangements for supervision of the student while out of the classroom during an exam. For example, the excuse that “I drink a lot of coffee or etc.”, will not be acceptable as justification for the student’s expectation of frequent departures during a lecture or leaving the room during any exam.

VIII. Evaluation Procedure:

What students must know to earn the grade expected: The student will be responsible for all of the assigned reading material even if the assigned material is not addressed during a lecture. The student will also be responsible for any facts or information introduced during a lecture or handouts by the professor as new material or material relevant to the course and which is not in the course reading assignment. The student will be expected to know molecular structures and the details of macromolecules that the professor indicates as essential, and to explain and describe these structures or their interactions with other molecules as needed and in the correct language of molecular cell biology. Retained knowledge of certain facts is fundamental to computer-assisted learning or other learning approaches and, most importantly, for correlating concepts in their practical use or for problem solving. The student will be expected
to use the “language” and “dictionary” of molecular cell biology both verbal and written formats as defined by the textbook and in class lectures during their discussions in class, on exams and in problems sets.

Nature/procedures regarding Exams shall be essay or short answer format. The dates for exams are given in the course outline. The exam questions will involve: 1) specific answers requiring memorization; 2) correlation of facts and/or concepts; 3) analysis and problem solving using facts, molecular structures or data presented in an experimental design or application; 4) the ability to synthesize, design or organize basic experimental approaches to a specific problem; 5) questions as appropriate to the subject matter of the course.

Rules of Conduct For and During Exams:

Rules of Conduct For and During Exams:

Rules of Conduct for Exams and Problem Sets: “On my honor as an Aggie, I have neither given nor received unauthorized aid on this academic work.”

This means that each student’s effort on an exam or problem set will be individual, not a team effort with other members of the class, or based upon consultation with anyone outside of the professor in charge of the course, with exception of someone whom the professor designates to give advice or assistance.

Grading policy: Grading for 213-200 will be assigned on the basis of four (4) exams (100 pts each) and two (2) special problems sets (50 points each) to be completed during the semester that total 100 points (equivalent to one exam). The grade for the course will be 500/5=X. The expected grade distribution should be: 88-100 = A; 78-87 = B; 68-77 = C; 58-67 = D. The final grade distribution can depend on the grade point "curve" which may depart from that given above, and will be determined by the Professor during the progress of the course. Each successive exam can cover all subject material considered in the course to the date of that exam.

The professor will present, and explain, the class grade point distribution on each exam and the cumulative grade point distribution with each subsequent exam so each student will know their relative position in the grading scale as the course progresses.

Questions on exams taken: The time required for the student requesting clarification on answers to exam questions and problem sets is limited to one week after the date of return to the student. The student will be expected to arrange an appointment convenient to the student and Professor, but still within one week following return of the exam or problem set.
MAKE-UP EXAMS ARE NOT GIVEN IN THIS COURSE: If one exam is missed, the next exam will count 2X. If a student maintains an “A” average (including problem sets) and has attended all lectures and special sessions (problem set discussions and review sessions), exam IV will not be required with the exception for those students with a borderline grade. Any student(s) who are borderline A/B will be required to take Exam IV. “Border Line” is defined as within +three (+3) points (average) of the professor’s designated cut-off for "A" and "B" grades.

X. Attendance/Tardiness:

Attendance policy: Students arriving later than 5 minutes after class start or start of a review session or problem set discussion will be considered absent.

The university views class attendance as an individual student responsibility (http://student-rules.tamu.edu). Students are expected to attend class and to complete all assignments. Instructors are expected to give adequate notice of the dates on which major tests will be given and assignments will be due. This information should be provided on the course syllabus, which should be distributed at the first class meeting.

7.1 The student is responsible for providing satisfactory evidence to the instructor to substantiate the reason for absence. Among the reasons absences are considered excused by the university are the following: to view Rule 7, please go to http://student-rules.tamu.edu/rule7.htm

For this class a Texas A&M University Explanatory Statement for Absence from Class form (http://attendance.tamu.edu) and a Confirmation of visit to a health care professional affirming date and time of visit will need to be obtained and presented to the Instructor.

Utilization of Health Center services does not indicate that a class excuse will be given. Each patient is given a receipt upon payment for services; however, this is not a class excuse and is solely for insurance purposes should the student choose to file a claim. Students are encouraged to communicate with their instructors if they are going to miss class for any reason. A copy of Student Rules may be obtained from Student Activities in the Koldus Building or at the following website: http://student-rules.tamu.edu

7.1.7 Required participation in military duties.

7.1.8 Mandatory admission interviews for professional or graduate school which cannot be rescheduled.

7.2 If the student is found to be too ill to attend class by a Health Center physician, the director of the Health Center or his/her representative will, on request of the student, confirm this fact.

7.3 If an off-campus physician provides evidence of a student’s illness, the excuse documentation must contain the date and time of the illness and doctor’s opinion that the student was too ill to attend class. If a physician determines that the student is not ill, he or she will not receive an excuse. If no evidence is available, the instructor will decide whether makeup work will be allowed.
7.4 The associate dean for undergraduate programs, or the dean’s designee, of the student’s college may provide a letter for the student to take to the instructor stating that the dean has verified the student’s absence as excused.

7.5 If the student is seeking an excused absence, the student must notify the instructor as soon as possible after the absence, but no later than the end of the second working day after the last date of absence. If the absence occurs the same day as a scheduled exam or other graded procedure, the student must notify his/her instructor or department by the end of the next working day after the absence in order to ensure full rights. The student is responsible for providing satisfactory evidence to the instructor within one week of his or her absence return to substantiate the reason for absence.

7.6 The instructor is under no obligation to provide an opportunity for the student to make up work missed because of an unexcused absence.

Unexcused Absences, for information on appealing an instructor’s decision.

7.8 If the student is absent for excused reasons for an unreasonable amount of time during the semester, the academic dean of the student’s college may consider giving the student a grade of W during the semester enrolled or a NG (no grade) following posting of final grades.

7.9 Whenever a student is absent for unknown reasons for an extended period of time, the instructor should initiate a check on the welfare of the student by reporting through the head of the student’s major department to the dean of the student’s college.

Religious Observances: http://dof.tamu.edu/faculty/policies/religiousobservation.php

X. Other Class Procedures:

Tutoring assistance and support services: Center for Academic Enhancement
Texas A&M University
525 Blocker
College Station, Texas 77843-4230
(979) 845-2724
http://slc.tamu.edu/

The Center for Academic Enhancement offers, at no cost to the student, a variety of learning assistance programs designed to develop and improve skills necessary for success in college-level courses. Assistance available includes:

• Academic Assistance Clearinghouse - The Texas A&M University Academic Assistance Clearinghouse at http://www.tamu.edu/aac provides students with information on the academic assistance programs and services available, free of charge, from academic departments.

• Supplemental Instruction - regularly scheduled, out-of-class, study and review sessions for selected core curriculum courses. SI sessions are open to all students in the course section, and attendance is voluntary. Traditionally difficult courses are targeted for the program with study sessions being led by professionally trained students who have demonstrated competence in the course. National evaluation data show that the average course grade of SI
participants is between one-half and one full letter grade higher than the average course grades of students not participating in SI. Local data are consistent with national evaluation data.

- **CAEN 101: Succeeding in College** - a two credit hour which is a study of critical theories of learning with application to academic performance. Eligible students may register on-line or students can be referred by an academic advisor.

- **CAEN 102: Career Awareness** - a two credit hour course which introduces students to the concepts of career planning, employment trends, and methods of researching and preparing for the job market.

- **CAEN 289: Special Topics** – variable credit courses offered by CAE staff or other faculty on campus to meet specific needs for academic support or student development a two credit hour course which introduces students to the concepts of career planning, employment trends, and methods of researching and preparing for the job market.

To register for courses or for more information, contact the Center for Academic Enhancement, 845-2724, or come by 525 Blocker.

ATmentors Program Office
Henderson Hall
Texas A&M University
College Station, TX 77843-1263
(979) 845-6900/1-800-828-0888
http://mentors.tamu.edu/

MENTORS are Texas A&M faculty, staff, and administrators who volunteer extra office hours to make themselves available to students who “just want to talk to someone.” MENTORS are available to talk with, listen to, and help each student feel a part of the Aggie community. MENTORS advise students in their areas of experience and competence, and they are trained to be effective referral sources to other Texas A&M services for specific problems or needs.

With almost 400 MENTORS, you can find at least one in almost every department and every location on campus. The MENTORS have complete directories of every MENTOR’s name, department, location, and telephone number. To find a mentor for Biology go to: http://mentors.tamu.edu/ Complete lists of MENTORS are available from your Resident Director, the Housing Programs Office, the Off Campus Center, the Area Offices, the Library Reserve section, and the Student Counseling Service.

The MENTORS program does not attempt to replace or substitute for in any way the programs provided by departmental advisers, the Student Counseling Service, and the many other valuable student services available at Texas A&M University. On the contrary, MENTORS works hand-in-hand with all of these services, helping students to locate and use them. Representatives from various student services participate in discussion groups and share their particular expertise with participating MENTOR faculty, staff, and administrators, who work with these programs to help students.

Student Counseling Service
Henderson Hall
Texas A&M University
College Station, TX 77843-1263
(979) 845-4427
Students are invited to talk with professional counselors and psychologists about any concerns that affect their academic progress, educational goals, choice of career, personal-social effectiveness or emotional well-being. In counseling, the focus is on assisting students with developing academic, career planning, and personal skills; understanding themselves and their concerns; and making decisions and changes that they judge are best for them.

The following services are provided for students:

- **Learning Skills Assistance** - Individual assistance with and workshops on study skills, test taking, time management, etc. Also available is information about academic support services such as tutoring, help desks, etc.

- **Educational Planning** - Choosing an academic major (departmental academic advisers assist students with selecting classes).

- **Career Counseling** - Learning about one's interests, personality, values and various career opportunities in order to make informed career decisions.

- **Computer Assisted Career Guidance** - Assistance with clarifying one's values in order to identify career alternatives.

- **Personal-Social Counseling** - An opportunity to talk about personal values and beliefs, relationships, sexual development and concerns, and behaviors that are problematic. Couples, premarital, marriage and divorce counseling are also available.

- **Relaxation Training** - Learning to cope better with stress in order to become a more effective student and person.

- **Group Counseling** - Includes, among other experiences, choice of academic major workshops, career decision-making workshops, and groups focusing on the development of effective personal-social skills and the resolution of various specific concerns.

- **Emergency Counseling** - From 8 a.m. to 5 p.m., Monday through Friday, come to the Student Counseling Service (Cain Hall). At night and on weekends call the HelpLine (979) 845-2700.

- **Test Interpretation** - Study skills, career interest, and personality inventories are provided and are interpreted by a counselor to assist the student with improving learning skills, selecting a major and career, and developing self-understanding.

- **Information Libraries** - Up-to-date and comprehensive libraries of academic, educational, career, and personal self-help information are available for use without an appointment.

- **CounselLine Self-Help Program** - Provides basic information about a wide variety of academic, career, and personal concerns. Call (979) 845-2958 to anonymously request any tape(s) or information about available tapes.

- **Referral Resource** - Counselors can refer students to other specialized services, including long-term counseling resources, found within the University and the surrounding geographic area.

The Student Counseling Service respects the confidential nature of counseling sessions to the limits provided by law, and no record of a student's visits is made on an academic transcript or in a placement file. Except for certain special services, no fees are charged for counseling.

Appointments for limited duration counseling services may be arranged by calling (979) 845-4427, or by going to the Student Counseling Service located in Cain Hall. In a CRISIS/EMERGENCY situation, the student should come to the Student Counseling Service during weekday, daytime service hours. At night or on weekends the student should call HelpLine at 979-845-2700.
XI. Academic Dishonesty: http://student-rules.tamu.edu

From Texas A&M University Student Rules

Scholastic Dishonesty

Students in MCB213:200 are expected to carry out course responsibilities in compliance with the Aggie Honor Code: "An Aggie does not lie, cheat, or steal or tolerate those who do."

Honor Council Rules and Procedures on the Web at: http://www.tamu.edu/aggiehonor

Misconduct in research or scholarship includes fabrication, falsification, or plagiarism in proposing, performing, reviewing, or reporting research. It does not include honest error or honest differences in interpretations or judgments of data.

Texas A&M University students are responsible for authenticating all work submitted to an instructor. If asked, students must be able to produce proof that the item submitted is indeed the work of that student. Students must keep appropriate records at all times. The inability to authenticate one’s work, should the instructor request it, is sufficient grounds to initiate an academic dishonesty case.

Academic dishonesty includes the commission of any of the following acts. This listing is not, however, exclusive of any other acts that may reasonably be called academic dishonesty. Clarification is provided for each definition by listing some prohibited behaviors.

1. **Cheating**
 - Intentionally using or attempting to use unauthorized materials, information, notes, study aids or other devices or materials in any academic exercise.

2. **Fabrication**
 - Making up data or results, and recording or reporting them; submitting fabricated documents.

3. **Falsification**
 - Manipulating research materials, equipment, or processes, or changing or omitting data or results such that the research is not accurately represented in the research record.

4. **Multiple Submissions**
 - Submitting substantial portions of the same work (including oral reports) for credit more than once without authorization from the instructor of the class for which the student submits the work.

5. **Plagiarism**
 - The appropriation of another person's ideas, processes, results, or words without giving appropriate credit.

General information pertaining to plagiarism:

Style Guides:
Instructors are responsible for identifying any specific style/format requirement for the course. Examples include, but are not limited to, American Psychological Association (APA) style and Modern Languages Association (MLA) style.
Direct Quotation:
Every direct quotation must be identified by quotation marks or appropriate indentation and must be properly acknowledged in the text by citation or in a footnote or endnote.

Paraphrase:
Prompt acknowledgment is required when material from another source is paraphrased or summarized, in whole or in part, in one's own words. To acknowledge a paraphrase properly, one might state: "To paraphrase Locke's comment..." and then conclude with a footnote or endnote identifying the exact reference.

Borrowed facts:
Information gained in reading or research, which is not common knowledge, must be acknowledged.

Common Knowledge:
Common knowledge includes generally known facts such as the names of leaders of prominent nations, basic scientific laws, etc., basic historical information (e.g., George Washington was the first President of the United States.) Common knowledge does not require citation.

Works Consulted:
Materials which add only to a general understanding of a subject may be acknowledged in the bibliography, and need not be footnoted or end-noted. Writers should be certain that they have not used specific information from a general source in preparing their work unless it has been appropriately cited. Writers should not include books, papers, or any other type of source in a bibliography, "works cited" list, or a "works consulted" list unless those materials were actually used in the research. The practice of citing unused works is sometimes referred to as "padding."

Footnotes, endnotes, and in-text citations:
One footnote, endnote, or in-text citation is usually enough to acknowledge indebtedness when a number of connected sentences are drawn from one source. When direct quotations are used, however, quotation marks must be inserted and acknowledgment made. Similarly, when a passage is paraphrased, acknowledgment is required.

Graphics, design products, and visual aids:
All graphics, design products, and visual aids from another creator used in academic assignments must reference the source of the material. General information pertaining to plagiarism:

6. Complicity
 Intentionally or knowingly helping, or attempting to help, another to commit an act of academic dishonesty.
 For additional information please see: http://www.tamu.edu/aggiehonor/

XII. Americans with Disabilities Act (ADA):
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Office of Support Services for Students with Disabilities. The phone number is (979) 845-1637 or visit their website at: http://disability.tamu.edu
XIII. Course Units/Calendar: http://admissions.tamu.edu/registrar/general/calendar.aspx
- Online Access to the Course Textbook

<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
<th>Topic</th>
</tr>
</thead>
</table>
| Monday August 31 | Class 1 | Introduction to course: Syllabus, Prerequisites, Grading, Exam Schedule, Cells: Prokaryotes, Eukaryotes; Viruses, Model Organisms
Reading: Pages 1-30; techniques 727-742
Handouts: http://www.tamu.edu/summerslab/ – "Teaching" link – Lecture 1 |
| Wednesday September 2 | Class 2 | Major classes of Biological Molecules, Chemistry of Cells
Reading: 31-49, techniques 742-744
| Friday September 4 | Class 3 | Last day to drop/add. |
| Monday September 7 | Class 4 | Major classes of biological Molecules, Chemistry of Cells: Protein structure; Chemical bonds important in biological molecules; Functional groups.
Reading: 51-75; techniques 744-753
| Wednesday September 9 | Class 5 | Major classes of Biological Molecules, Proteins (cont.); bases, nucleosides, nucleotides
Reading: 75-84
Handouts: http://www.tamu.edu/summerslab/ – "Teaching" link – Lecture 4 |
| Friday September 11 | Class 6 | Chromosomal organization of DNA
Reading: 388-428
Handouts: Lecture 5 |
| Monday September 14 | Class 7 | Genetic code; Transcription, translation; regulation of gene expression.
Reading: 429-484
Handouts Lecture 6 |
| Wednesday September 16| Class 8 | Review for Exam I
Minnie Belle Heep Building, Room 413
(6 to 9 p.m.) |
| Friday September 18 | Class 9 | Monday September 21 |
| Monday September 21 | Class 10 | Review for Exam I
Minnie Belle Heep Building, Room 413
(6 to 9 p.m.) |
<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
<th>Topic</th>
<th>Reading/Handouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>Class 11</td>
<td>EXAM I</td>
<td></td>
</tr>
<tr>
<td>September 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Class 12</td>
<td>Gene cloning and engineering</td>
<td>Reading: 753-776</td>
</tr>
<tr>
<td>September 25</td>
<td></td>
<td></td>
<td>Problems Set Bioinformatics I</td>
</tr>
<tr>
<td>Monday</td>
<td>Class 13</td>
<td></td>
<td>Handouts: Lecture 7</td>
</tr>
<tr>
<td>September 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Class 14</td>
<td>Gene cloning and engineering, (cont.)</td>
<td>Handouts: Lecture 8</td>
</tr>
<tr>
<td>September 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Class 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>Class 16</td>
<td>Biological Reactions, Enzymes</td>
<td>Reading: 85-119</td>
</tr>
<tr>
<td>October 5</td>
<td></td>
<td></td>
<td>Handouts: Lecture 9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Class 17</td>
<td>Replication of the genome: DNA, genes, replication, mutation, repair.</td>
<td>Reading: 542-564; techniques 758-763</td>
</tr>
<tr>
<td>October 7</td>
<td></td>
<td></td>
<td>Handouts: Lecture 10</td>
</tr>
<tr>
<td>Thursday</td>
<td>Class 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 8</td>
<td>PROBLEM SET I ~ HELP SESSION</td>
<td>MINNIE BELLE HEEP BUILDING, ROOM 413</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6 to 9 p.m.)</td>
</tr>
<tr>
<td>Friday</td>
<td>Class 19</td>
<td>Regulation of gene expression, transcription and post transcriptional</td>
<td>Reading: 485-541</td>
</tr>
<tr>
<td>October 9</td>
<td></td>
<td>regulation</td>
<td>Handouts: Lecture 11</td>
</tr>
<tr>
<td>Monday</td>
<td>Class 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 12</td>
<td></td>
<td></td>
<td>Rearrangement and exchange of genetic information</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Class 21</td>
<td></td>
<td>Reading: 409-415 & 607-609</td>
</tr>
<tr>
<td>October 14</td>
<td></td>
<td></td>
<td>Handouts: Lecture 12</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Class 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 14</td>
<td>REVIEW FOR EXAM II</td>
<td>MINNIE BELLE HEEP BUILDING, ROOM 413</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6 to 9 p.m.)</td>
</tr>
<tr>
<td>Friday</td>
<td>Class 22</td>
<td></td>
<td>EXAM II</td>
</tr>
<tr>
<td>October 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Class</td>
<td>Topic</td>
<td>Reading</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Monday October 19</td>
<td>Class 22</td>
<td>Structure of cell membranes; membrane proteins, membrane biogenesis.</td>
<td>120-147</td>
</tr>
<tr>
<td>Wednesday October 21</td>
<td>Class 23</td>
<td>Mid Semester Grades Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handouts: Lecture 13</td>
<td></td>
</tr>
<tr>
<td>Friday October 23</td>
<td>Class 24</td>
<td>Membrane transport; active transport, passive transport, cell communication.</td>
<td>147-178</td>
</tr>
<tr>
<td>Monday October 26</td>
<td>Class 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday October 28</td>
<td>Class 26</td>
<td>Protein processing, sorting; vesicle transport, secretion</td>
<td>274-310</td>
</tr>
<tr>
<td>Friday October 30</td>
<td>Class 27</td>
<td>Endocytosis, exocytosis</td>
<td>311-327</td>
</tr>
<tr>
<td>Monday November 2</td>
<td>Class 28</td>
<td>Signal Transduction: cell communication, cell surface receptors; cell signaling cascades.</td>
<td>616-653</td>
</tr>
<tr>
<td>Wednesday November 4</td>
<td>Class 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday November 6</td>
<td>Class 30</td>
<td>Cell Surface Interactions</td>
<td>239-273</td>
</tr>
<tr>
<td>Friday November 6</td>
<td></td>
<td>Last day to drop with no penalty (Q-drop)</td>
<td></td>
</tr>
<tr>
<td>Monday November 9</td>
<td>Class 31</td>
<td>Cell Surface Interactions (cont.)</td>
<td></td>
</tr>
<tr>
<td>Monday November 9</td>
<td></td>
<td>REVIEW FOR EXAM III</td>
<td></td>
</tr>
<tr>
<td>MINNIE BELLE HEEP BUILDING, ROOM 413</td>
<td></td>
<td>(6 to 9 p.m.)</td>
<td></td>
</tr>
<tr>
<td>Wednesday November 11</td>
<td>Class 32</td>
<td>EXAM III</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Class</td>
<td>Topic</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>November 12</td>
<td>Class 33</td>
<td>Cell cytoskeleton: Reading: 328-387 Handouts: Lecture 19</td>
<td></td>
</tr>
<tr>
<td>November 13</td>
<td>Class 34</td>
<td>Cell cytoskeleton (cont.)</td>
<td></td>
</tr>
</tbody>
</table>
| November 16 | Class 35| **During the remaining weeks of the course lecture series, the students will be expected to have achieved a level of maturity and understanding of the course material. If time, schedule and size of class allows. The professor, on occasion, will select a student to lead discussion on a particular aspect of the lecture. The student will be graded by the professor and the class.**
<p>| November 18 | Class 35| Glycolysis, fermentation, citric acid cycle. Reading: 179-213 Handouts: Lecture 20 |
| November 20 | Class 36| Photosynthesis: Reading: 214-238 Handouts: Lecture 21 |
| November 23 | Class 37| Cell cycle, cell cycle regulation, apoptosis Reading: 570-599; 654-659 Handouts: Lecture 22 |
| November 25 | Class 38| Problems Set II - DUE |
| November 26/27 | | Thanksgiving Holiday |
| November 30 | Class 39| Cell cycle (cont.) oncogenes, characteristics of cancer. Reading: 662-692 Handouts: Lecture 23 |
| November 30 | | REVIEW FOR EXAM IV |
| | | MINNIE BELLE HEEP BUILDING, ROOM 413 (6 to 9 p.m.) |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>40</td>
<td>The Immune Response.</td>
</tr>
<tr>
<td>December 2</td>
<td></td>
<td>Reading: 692-726</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handouts: Lecture 24</td>
</tr>
<tr>
<td>Friday</td>
<td>41</td>
<td>EXAM IV</td>
</tr>
<tr>
<td>December 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 26/27</td>
<td></td>
<td>Thursday – Friday</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thanksgiving Holiday</td>
</tr>
<tr>
<td>Monday</td>
<td>7</td>
<td>No Class</td>
</tr>
<tr>
<td>December 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>21</td>
<td>Final Grades due</td>
</tr>
<tr>
<td>December 21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Exam Schedule: http://admissions.tamu.edu/registrar/general/finalschedule.aspx

XIV. Disclaimer:

The above schedule and procedures in this course are subject to change in the event of extenuating circumstances.

Any material discussed or presented within the subject under consideration is considered to be important and subject to examination. Because of the rapidly developing state of science, such discussion as relevant to course content may be frequent and may vary in detail and comprehensiveness.

On the rare occasion it may be necessary for the professor to be absent from lecture (e.g., illness or professional obligations justifying the professor’s absence), the professor in charge of instruction will make every reasonable effort to obtain a substitute for the lecture.
XV. Appendices/Extras:

MOLECULAR AND CELL BIOLOGY DEGREE PLAN (Bachelor of Science)

http://www.tamu.edu/admissions/catalogs/08-09_UG_Catalog/science/dept_biology/molec_cell_biology.htm

Texas A&M University

Undergraduate Catalog, 2008-2009

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Name</th>
<th>Cr Hrs</th>
<th>Course #</th>
<th>Course Name</th>
<th>Cr Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biol</td>
<td>4</td>
<td>BIOL 112</td>
<td>Introductory Biol</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 101 plus CHEM 111</td>
<td>Fundamentals of Chem I</td>
<td>4</td>
<td>CHEM 102 plus CHEM 112</td>
<td>Fundamentals of Chem II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition & Rhetoric</td>
<td>3</td>
<td>HIST 105</td>
<td>History of the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1661</td>
<td>Topics in Contemporary Math II</td>
<td>3</td>
<td>MATH 131</td>
<td>Mathematical Concepts-Calculus</td>
<td>3</td>
</tr>
<tr>
<td>KINE 198</td>
<td>Health and Fitness Activity</td>
<td>1</td>
<td>KINE 199</td>
<td>Required Physical Activity</td>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td></td>
<td>Total:</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Sophomore Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 213</td>
<td>Mol Cell Biol</td>
<td>3</td>
<td>BIOL 214</td>
<td>Genes, Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chem I</td>
<td>3</td>
<td>CHEM 228</td>
<td>Organic Chem II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Lab</td>
<td>1</td>
<td>CHEM 238</td>
<td>Organic Lab</td>
<td>1</td>
</tr>
<tr>
<td>HIST 1062</td>
<td>History of the U.S.</td>
<td>3</td>
<td>PHYS 202</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
<td>ELEC</td>
<td>Communication</td>
<td>3</td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td></td>
<td>Total:</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochem I</td>
<td>3</td>
<td>BICH 411</td>
<td>Comprehensive Biochem II</td>
<td>3</td>
</tr>
<tr>
<td>GENE 302</td>
<td>Genetics</td>
<td>4</td>
<td>BICH 414</td>
<td>Biomedical Techniques</td>
<td>2</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
<td>BICH 431</td>
<td>Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td>3</td>
<td>MICR 351</td>
<td>Fundamentals of Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>ELEC</td>
<td>Visual/Perform Arts</td>
<td>3</td>
<td>HUM ELEC</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td></td>
<td>Total:</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
<td>BIOL ELEC</td>
<td>MCB ELEC</td>
<td>Social Sci. ELEC</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>BIOL 413</td>
<td>Cell Biology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 414</td>
<td>Dev. Biol</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 423</td>
<td>Cell Biol Lab</td>
<td>1</td>
<td></td>
<td></td>
<td>Social Sci. ELEC</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State & Local Government</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCB ELEC</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 14

TOTAL Hours: 120
Biology 213 - Molecular Cell Biology

Bibliography:
Max D. Summers
Distinguished Professor
Endowed Chair in Agricultural Biotechnology

Wilmington College, Wilmington, OH A.B. 1962 Biology
Purdue University, West Lafayette, IN Ph.D. 1968 Entomology

RESEARCH AND PROFESSIONAL EXPERIENCE:
1969-73 Assistant Professor of Botany, The University of Texas at Austin
1973-77 Associate Professor of Botany, The University of Texas at Austin
1976 Visiting Associate Professor and Associate Insect Pathologist, Department of Entomology, University of California, Berkeley (Invited)
1977- Professor of Entomology, Department of Entomology, Texas A&M University
1983- Distinguished Professor of Entomology
1986- Endowed Chair in Agricultural Biotechnology
1988-00 Director, Center for Advanced Invertebrate Molecular Sciences
1991- Professor of Biology
1992- Professor of Biochemistry and Biophysics
2001-04 Associate Vice President for Research

FEDERAL GOVERNMENT PUBLIC ADVISORY COMMITTEES:
1986-90 US Department of Commerce, Biotechnology Technical Advisory Committee
2000-01 Member, American Academy of Microbiology, Chiron Corporation Biotechnology Research Award Nominating Committee
2000-01 Committee on Science, Engineering and Public Policy (COSEPUP) Panel: Government Performance and Results Act (GPRA) Panel on Accountability and Federally Funded Research, Panelist
2005-08 Board of Governors Nominating Committee, American Society for Microbiology
2004-09 Advisory Committee on Research Programs (ACROP) - Texas Higher Education Coordinating Board
2008-11 Board of Directors, The Texas Academy of Medicine, Engineering and Sciences

HONORS:
1983-03 Editor, Virology
1986-87 Foundation for Microbiology Lecturer, The American Society for Microbiology
1988 Fellow, American Association for the Advancement of Science
1988 First John V. Osmun Alumni Professional Achievement Award in Entomology, 1988
1989 National Academy of Sciences of the United States of America
1991-92 President, American Society for Virology
1991-94 Chair of Class VI, National Academy of Sciences
1992-00 Executive Editor, Protein Expression and Purification
1992 Fellow, American Academy of Microbiology
1992 First Distinguished Alumni Award, Purdue University, School of Agriculture
1999 Inventor of the Year Award, Houston Intellectual Property Law Association
2001 Most Highly cited in the World, Top 250 researchers in Microbiology
2003 Spirit of Innovation Award for Global Outreach, Texas A & M University System
2007 TAMU/AgriLife Vice Chancellor’s Award for Research, the Researcher of the Year
PUBLICATIONS (Selected from over 150 publications):

