MUTAGENS-OUTLINE

Basis for spontaneous mutations:

- each base can form tautomers that pair with the wrong partner leading to transitions
- oxidative deamination of C→U but usually repaired, but 5mC is converted to T, leading to CG to TA transitions
- depurination or depyrimidation (base broken from backbone) leads to AP sites where any base can be added opposite the blank during replication
- runs of one base, especially A can lead to insertion or deletion of bases by "slippage and restarting", during replication, especially of the lagging strand

Ionizing radiation (X-rays and α, β, γ- radiation)

- X-rays first proven mutagenic in Drosophila by Muller in the 1930s using the ClB technique
 - 3% increase in recessive X-linked lethals per 1 KR
 - dose administered quickly (acute) or slowly (chronic) same effect in flies, not in mice
- high doses also cause broken chromosomes and rearrangements

UV-light

- Light at 254 nM is absorbed especially well by Thymine
 - TT dimers formed in the same strand lack normal pairing
 - TT dimers across double strands can lead to breaks
 - Most dimers are repaired (see next lecture)

Chemicals

- Direct Acting (react with and alter bases in DNA)

 HA → HAC. pairs with A so GC to AT only
 - NA causes oxidative deamination of C, A and G, leading to transitions in either direction
 - Alkylating agents add methyl or ethyl to bases, especially G and lead to transitions and transversions

Ionizing radiation (X-rays and α, β, γ- radiation)

- X-rays first proven mutagenic in Drosophila by Muller in the 1930s using the ClB technique
 - 3% increase in recessive X-linked lethals per 1 KR
 - dose administered quickly (acute) or slowly (chronic) same effect in flies, not in mice
- high doses also cause broken chromosomes and rearrangements

UV-light

- Light at 254 nM is absorbed especially well by Thymine
 - TT dimers formed in the same strand lack normal pairing
 - TT dimers across double strands can lead to breaks
 - Most dimers are repaired (see next lecture)

Chemicals

- Direct Acting (react with and alter bases in DNA)

HA → HAC. pairs with A so GC to AT only
- NA causes oxidative deamination of C, A and G, leading to transitions in either direction
- Alkylating agents add methyl or ethyl to bases, especially G and lead to transitions and transversions
- examples include Mustard Gas, EMS, & NG

• *Base Analogs*
 - incorporated into DNA "by mistake" during replication, but tautomerize more often than normal bases
 - examples include 5BU and 2AP

• *Acridine dyes*
 - planar molecules intercalate into DNA double helix between base pairs
 - attempts to repair can cause insertion or deletion of true base pair
 - examples include ethidium bromide, ICR 171 and proflavin

Trinucleotide repeats:

• likely represent "slippage" events during DNA replication
• A number of hypervariable human genes have been shown to include multiple repeats of the same 3 base sequence
 - in Fragile X syndrome, a CGG repeat in the leader of the mRNA encoded normally has about 30 copies
 - "premutations" expand the number between 50 and 200 or so
 - if over 230 copies, fragile X and mental retardation expected
 - daughters of a premuational or affected male may be OK but most of their children will be affected
 - expansion occurs in embryonic cells, leading to mosaics, and helps to explain variability on expression
 - in Huntington's disease, a CAG repeat in the coding region can expand
 - -6 to 37 copies are "normal"
 - - as number of copies increase, earlier onset of symptoms occurs
 - expansion seems to occur more in males than females

Transposons

In many species, transposable elements account for most of the mutations found. They will be covered later in the course