GENETICS 310
EXAM 3
June 30, 2016

I. Which of the following enzymes or cloning tools would be used for the specific steps listed below? Put the code(s) provided in each blank as appropriate.

RE, restriction endonuclease, **RT**, reverse transcriptase **H**, RNAase H
L, DNA Ligase, **T** primer made of all Ts, **B**, beads with T tails,
TdT terminal deoxynucleotide transferase, **P**, DNA polymerase

a) cDNA clone preparation
 ___ B ____ Collecting eukaryotic mRNAs from ground tissue
 ___ RT ____ Making a cDNA copy of the messages
 H, **RT** or **P** ____ Replacing the RNA strand with a second strand of DNA
 ____ TdT ____ Adding A tails to the double stranded cDNAs

b) Shotgun cloning step
 ____ RE ____ Fragmenting donor DNA
 ____ L ____ Inserting fragments into a linearized pUC vector

II. Given the sequence below describe how you could make millions of copies in a short period of time. For simplicity, use arrows to indicate primers 1 and 2 that are just 7 bases long:

\[
5'\text{ACCGTCAACTGCAATGCGCGCTAGAATCGTTGCATGATGG}\ 3'
3'\text{TGGCAGTTGACGTTACGCGCGATCTTAGCAACGTACTACC}\ 5'
\]

Name of process? Polymerase Chain Reaction

Enzyme used? TAQ polymerase **Source?** Hot springs bacterium

III. Cross out the maize plants below that would not produce pollen based on their genotype (in the nucleus)/cytotype combinations?
IV. A) RB gene defects appear to be inherited as dominant, but not everyone who gets a defective copy develops retinoblastoma. **Tumor Suppressor**

2. What is the normal function of such genes? **Turn off cell division**

3. Why do some individuals with a defective RB gene escape getting retinoblastoma? *It requires a mutation in the remaining copy of a somatic cell*

B) The SRC gene was originally discovered to cause sarcomas in chickens following infection with Rous Sarcoma virus.

1. What type of gene is SRC in terms of cancer? **Oncogene**

2. What is the normal function of such genes? **Turn on cell division**

3. What general type of virus is RSV? **Retrovirus**

4. What is unusual about the RSV particles that cause sarcomas? *They carry an onc gene incorporated from a host genome*

5. How do we know that humans also have a SRC gene?
 DNA hybridization to the cloned chicken gene

C) At least 3 DNA viruses are associated with increased risk of cancer in humans. List 2 of them.

 Epstein Barr & **Hepatitis B or HPV**

V. A) Check the following that are found in or as a part of eukaryotic but not prokaryotic chromosomes:

 _____DNA _____RNA X_____histones _____lipids
 X_____centromeres X_____teleomeres _____mitomeres

B) Why do the chromosomes in a typical human karyotype appear doubled?

 They are taken from cells trapped at metaphase of mitosis
VI. Fill in **affected** individuals assuming a perfect segregation ratio for each trait:

- Mom is heterozygous for Duchene MD
- Dad is colorblind, mom is heterozygous
- Dad has a defect in one copy of the ‘Prader-Willi’ genes which should remain active in sperm
- Mom has MERRF, a mitochondrial defect
- Mom is heterozygous for complete androgen sensitivity (testicular feminization)
- What does affected mean in this case? **XY female**
- Mom is heterozygous for a dominant sex-linked gene

VII. Give an example of:

- A holandric gene **Sry = tdf, HY antigen**
- A visible consequence of the Lyon Hypothesis **calico cats**
- A sex-limited trait **lactation**
- A sex-influenced trait **horns in sheep, pattern baldness**
- A maternal effects trait **left/right coiling in snails**
- What force alters allele frequencies in small populations **drift (chance)**
VIII. Place the **letter or letters** of each of the following syndromes in all appropriate blanks:

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Angelman's</td>
<td>47 chromosomes, D, J, K, X</td>
</tr>
<tr>
<td>C) Cri-du-chat</td>
<td>Some IQ loss, A, C, D, J, K, (T), X</td>
</tr>
<tr>
<td>D) Down's</td>
<td>Female (always), T, X</td>
</tr>
<tr>
<td>J) Jacobs</td>
<td>Abnormal sex chromosome number, J, K, T, X</td>
</tr>
<tr>
<td>K) Klinefelter's</td>
<td>Normal fertility, J, X</td>
</tr>
<tr>
<td>T) Turner's</td>
<td>45 chromosomes, T</td>
</tr>
<tr>
<td>X) Triplo X</td>
<td>Genomic imprinting, A</td>
</tr>
<tr>
<td></td>
<td>Tall for family expectation, J, K</td>
</tr>
<tr>
<td></td>
<td>Deletion, C</td>
</tr>
</tbody>
</table>

IX. In cattle C_ animals are normal and cc develop cataracts. A DNA based polymorphism detected by PCR is just 4 map units from the cataracts gene. It's alleles are designated A35 or A50 for the size of the amplified product. Suppose a bull has the genotype

\[C A35/c A50 \]

What fraction of the sperm he produces will have the following gene arrangements:

\[C A35 \quad 48\% \quad C A50 \quad 2\% \quad c A35 \quad 2\% \quad c A50 \quad 48\% \]?

What genotype would be optimal in the cows if a rancher wanted to use PCR tests to cull calves with the cataracts c allele from his herd before they were allowed to reproduce?

\[C A35/C A35 \]

X. a) Two factors are known to lead to significant increase in the risk of trisomy 21. What are they?

\[\text{Aged mother} \quad \& \quad \text{Translocation of 21 to another} \]

b) 1. How are the seeds used to grow seedless watermelons produced?

\[4N \times 2N \text{ crosses} \]

b) 2. Why are they seedless?

\[\text{Gametes will not have balanced sets of chromosomes and will not function} \]
c) 1. A mouse homozygous for the gene arrangement ‘A B C • D E’ is crossed to another with the arrangement ‘a b d • c e’
Capital and small letters are used just to aid in the following drawing. Show synopsis (with the genes labeled) in meiosis of the **F1 hybrid** between the two animals.

![Drawing of meiosis](image)

c) 2. What is the name of the chromosomal aberration? **Prericentric inversion**

c) 3. What % fertility is expected in the F1 males and females? **Males 50%** **females 50%**

XI. Although other genes may modify the actual colors, in many breeds of sheep white wool is dominant (W_) and black is recessive (ww). In a large random mating flock 16% of the lambs are black. What are the allele frequencies of W and w?

\[P = f(W) = 0.6; \quad q = f(w) = 0.4 \]

What are the predicted genotypic frequencies in the flock?

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>36</td>
</tr>
<tr>
<td>Ww</td>
<td>48</td>
</tr>
<tr>
<td>ww</td>
<td>16</td>
</tr>
</tbody>
</table>

Suppose the shepherd sold off all the black lambs born one year, and kept the rest to start a new flock. What ‘force’ would be involved in changing allele frequencies?

Selection

If there were 100 lambs and the black ones were sold, what will the W and w allele frequencies be in this new flock once they are gone?

\[F(W) = \frac{(2 \times 36 + 48)}{168} \quad f(w) = 48/168 \]