A Decision Feedback Based Scheme for Slepian-Wolf Coding of sources with Hidden Markov Correlation

Krishna R. Narayanan and Kapil Bhattad
krn, kbhattad@ee.tamu.edu

Abstract—We consider the problem of compression of two memoryless binary sources, the correlation between which is defined by a Hidden Markov Model (HMM). We propose a Decision Feedback (DF) based scheme which when used with low density parity check codes results in compression close to the Slepian-Wolf limits.

I. INTRODUCTION

Consider the classical Slepian Wolf set up where two correlated sources X and Y have to be independently compressed and sent to a destination. It was shown in [1] that the achievable rate region is \(R_X \geq H(X|Y), R_Y \geq H(Y|X) \) and \(R_X + R_Y \geq H(X,Y) \). Recently, several practical coding schemes have been designed for this problem based on the idea of using the syndrome of a linear block code as the compressed output [2]. When \(Y = X \oplus e \), where the sequence \(e \) is memoryless, low density parity check (LDPC) codes have been used to achieve performance close to the Slepian-Wolf limit [3].

In this paper we consider the case when \(Y = X \oplus e \), where \(X \) and \(Y \) are binary i.i.d. sequences and \(e \) is the output of a Hidden Markov Model (HMM). This problem has been studied before by Garcia-Frias et al [4] and Tian et al [5]. In their scheme, \(X \) is compressed to \(H(X) \) bits and transmitted. The encoder for \(Y \) transmits a portion of the source bits without compression to “synchronize” the HMM. The remaining bits are used as bit nodes in an LDPC code and the corresponding syndrome is transmitted. The decoder employs a message passing algorithm with messages being passed between the HMM nodes, the bit nodes and the check nodes. In [5] Tian et al, considered three HMM’s and optimized the LDPC code ensemble using density evolution for these specific models. The resulting thresholds (the performance of an infinite length LDPC code) were 0.08-0.12 bits away from the Slepian-Wolf limits.

Here, we use a different approach. The main differences between the proposed work and that in [4], [5] are that - (i) a decision feedback scheme is used instead of iterating between the HMM model nodes and the LDPC decoder. This also reduces the decoding complexity significantly (ii) The LDPC codes used are optimized for a memoryless channel instead of being optimized for the channel with memory and, hence, the optimization is considerably simpler than in [5]. (iii) The proposed scheme is similar to the scheme in [7] to find the capacity of the Gilbert-Elliott channel and is provably optimal asymptotically in the length.

With the proposed scheme, for the models considered in [5] we are able to design codes that have thresholds within 0.03 bits of the Slepian-Wolf limits allowing for a distortion of 1e-5, which is considerably better than those in [5].

II. PROPOSED SYSTEM

Consider two binary sources \(X \) and \(Y \) such that \(Y = X \oplus e \) where \(Y \) is independent and uniformly distributed. Typical compression schemes to achieve a corner point in the Slepian-Wolf region involve sending \(X \) using \(H(X) \) bits and sending the syndrome of \(Y \) corresponding to a linear code \(C \) using \(H(Y|X) \) bits. It can be shown that the problem of compression is equivalent to the problem of finding a capacity achieving linear code for the channel shown in Fig. 1 [2].

When \(e \) is memoryless, there are tools available to design LDPC codes that achieve capacity on this channel and, hence, achieve the Slepian-Wolf limit. In our case, \(e \) is the output of a HMM with three parameters \(S \), \(P \) and \(\mu \). \(S \) defines the different states, \(P \) is an \(|S| \times |S| \) matrix with \(P_{i,j} \) representing the probability of transition from state \(S_i \) to \(S_j \) and \(\mu \), \(|S| \times 1\), has elements \(\mu_i \) which give \(P(e = 0|S_i) \). The probability of \(e \) being 0 or 1 depends only on the current state. We further assume that when no state information is available, the output of the HMM is equally likely to be zero or one.

In [6] Narayanan et al use a Decision Feedback Equalization (DFE) based scheme for ISI channels that makes the channel appear memoryless to the LDPC decoder. We use the same technique to make the channel appear memoryless and then design codes for this “memoryless” channel. The encoding and decoding operations are explained below.

A. Encoder

We will describe a scheme to achieve a corner point of the Slepian Wolf coding region corresponding to \(R_X = H(X) \) and \(R_Y = H(Y|X) \). The encoding process is shown in Fig. 2. Let us assume that both sequences \(X \) and \(Y \) are first arranged in the form of \(L \times N \) matrices \(X \) and \(Y \). The \((i,j)\)th element in \(Y \) is \(y_{(i-1)L+j} \). We will use \(Y_{i,j} \) to denote the \((i,j)\)th element in \(Y \) and \(y_j \) to denote the \(j \)th column of \(Y \). The sequence \(X \) is compressed using an entropy coder to \(H(X) \) bits. For the models considered in this paper, the sequence \(X \) contains independent and uniformly distributed bits and, hence, no compression is needed for \(X \). The first \(M \) columns in \(Y \) are transmitted without any compression.
(these are referred to as pilots). For each column \(y_{j} \) \(j > M \) in \(Y \) the syndrome, \(\tilde{y}_{j} \), corresponding to an \((N, K)\) LDPC code is computed and conveyed to the receiver. When an LDPC code with \(N \) bit nodes and \(N - K \) check nodes is used, the syndrome \(\tilde{y}_{j} \) is simply the check values when the bit nodes are set to \(y_{j} \). Therefore, the compressed sequence is given by \(Y_{\text{comp}} = (Y_{1}, Y_{2}, \ldots, Y_{M}, \tilde{Y}_{M+1}, \ldots, \tilde{Y}_{L}) \). The compression rate of this scheme is

\[
R = \frac{NM + (N - K)(L - M)}{NL} = 1 - \frac{K}{N} \left(1 - \frac{M}{L} \right)
\]

B. Receiver

The receiver has \(X \) and \(Y_{\text{comp}} \). Since the first \(M \) columns in \(Y \) are sent without any compression, the receiver has the first \(M \) columns of \(Y \). Hence, the receiver can form the error values \(e_{j} \) for the first \(M \) columns. From column \(M + 1 \) onwards, the receiver tries to recover \(e_{j} \) using the following procedure. It first computes soft estimates of bits \(e_{i,M+1} \) by using the error values in the past \(M \) columns, i.e., \(e_{i,1}, e_{i,2}, \ldots, e_{i,M} \) by using

\[
\gamma_{i,M+1} = \log \frac{P(e_{i,M+1} = 1|e_{i,M}, e_{i,M-1}, \ldots, e_{i,1})}{P(e_{i,M+1} = 0|e_{i,M}, e_{i,M-1}, \ldots, e_{i,1})}
\]

Note that the consecutive values of \(e \) from any row are the sequential outputs of the HMM and, hence, in Equation 2 the estimate for a particular bit is made only from the past bits in the same row. Since \(e \) is the output of a HMM, \(\gamma_{i,j} \) can be computed efficiently using the forward recursion of a BCJR algorithm. From the soft estimates of \(e_{i,M+1} \), one can directly form soft estimates of \(Y_{i,M+1} \) given by \(\lambda_{i,M+1} \) since \(Y = X \oplus e \) and \(X \) is available at the receiver.

Now the LDPC decoder is run to decode \(y_{M+1} \) by using \(\lambda_{M+1} \) as the soft output corresponding to \(y_{M+1} \) and \(\tilde{y}_{M+1} \) as the check values. With a suitably chosen LDPC code the receiver can recover \(y_{M+1} \). The whole process can be repeated to recover the next column and so on till all columns are decoded. For an LDPC code with finite length codewords, \(y_{M+1} \) will fail to decode with some probability. This may cause error propagation within that block.

III. Achievable Information Rate

The LDPC decoder tries to decode bits \(Y_{i,j} \) by using \(\lambda_{i,j} \) which can be considered as the output of a channel with input \(Y_{i,j} \). If \(L \) is made large the bits corresponding to a particular column are far apart in time (at least \(L \) time units apart) and therefore it can be assumed that they go through independent channels. That is, we can assume that for a given \(j \), the channel between \(Y_{i,j} \to \lambda_{i,j} \) and \(Y_{p,j} \to \lambda_{p,j} \) are independent and identical for \(i \neq p \). The capacity of this channel is given by

\[
C = H(Y_{i,j}|X_{i,j}) - H(Y_{i,j}|X_{i,j}, \lambda_{i,j}) = H(\lambda_{i,j}) - H(\lambda_{i,j} | \gamma_{i,j})
\]

The second equality in Eqn. 3 is true since \(Y = X \oplus e \) and, hence, \(H(Y|X) = H(e) \). Since \(\gamma_{i,j} \) is the optimal estimate of \(e_{i,j} \) given \(e_{i,j-1}, \ldots, e_{i,j-M} \) we have

\[
C = H(\lambda_{i,j}) - H(\lambda_{i,j}|e_{i,j-1}, \ldots, e_{i,j-M}) = 1 - H(e_{i,j}|e_{i,j-1}, \ldots, e_{i,j-M})
\]

If a capacity achieving code is used then the resulting compression when \(L \gg M \) is \(H(e_{i,M+1}|e_{i,M}, \ldots, e_{i,1}) \). Note that the Slepian Wolf compression limit in this case is \(\lim_{M \to \infty} H(e_{i,M+1}|e_{i,M}, \ldots, e_{i,1}) \). We can come arbitrarily close to the Slepian Wolf limits by making \(M \) large and using a capacity achieving code for the “memoryless” channel. This shows the optimality of this scheme for asymptotically large \(L \) and \(M \). Note that there is a rate loss due to the first \(M \) columns being transmitted without compression, but that rate loss can be made arbitrarily small by choosing a large enough \(L \).

Although the arguments presented above show that this scheme is optimal as \(M \to \infty \), we do not require this. If we use a code of rate \(1 - H(e_{i,j}|e_{i,j-1}, \ldots, e_{i,1}) \) for the \(j \)th column, then we can obtain a compression rate of \(\frac{1}{M} \sum_{j} H(e_{i,j}|e_{i,j-1}, \ldots, e_{i,1}) \) which converges to \(H(e) = H(Y|X) \) from above as \(L \to \infty \) for any wide sense stationary process \(e \). This solution however requires variable rate LDPC codes for the different columns and, hence, is not used in this paper.

IV. Simulation Results

We compare the performance of the proposed scheme with the scheme used in [5]. The HMM used in [5] has two states \(S_{0} \) and \(S_{1} \) and is defined by four parameters \(P(S_{0} \to S_{0}), P(S_{1} \to S_{1}), P(0|S_{0}), P(1|S_{1}) \). The models considered are

- M1: (0.01, 0.065, 0.95, 0.925)
- M2: (0.97, 0.967, 0.93, 0.973)
- M3: (0.99, 0.989, 0.945, 0.9895)

Note that the parameters in the model are chosen so that they satisfy \(P(e = 0) = 0.5 \).

In Figure 3, we plot \(H(e_{i,M+1}|e_{i,M}, \ldots, e_{i,1}) \) as a function of \(M \) for the models. We observe that for these models the \(M \) required to come close to the Slepian Wolf limits is quite small. We use \(M = 4 \) for our simulations.
and were done with the designed LDPC codes of length 100000 where the correctness of this procedure is proved. Simulations with infinite length LDPC codes.

The loss in rate due to the pilots in the DF Scheme is not included in Table I. If the pilots are sent without compression, then the compression rate would increase by 0.04. However, this loss can be reduced significantly by increasing L and by compressing the pilots.

TABLE I

| Model | SW Limit | Tian et al[5] Theo | THEO | DF Scheme
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$H(Y</td>
<td>X)$</td>
<td></td>
<td>THEO</td>
</tr>
<tr>
<td>1</td>
<td>0.515</td>
<td>0.599</td>
<td>0.546</td>
<td>0.38</td>
</tr>
<tr>
<td>2</td>
<td>0.448</td>
<td>0.544</td>
<td>0.476</td>
<td>0.52</td>
</tr>
<tr>
<td>3</td>
<td>0.278</td>
<td>0.413</td>
<td>0.305</td>
<td>0.34</td>
</tr>
</tbody>
</table>

With $L = 100$ error propagation is a serious problem but it can be overcome by lowering the rate of the LDPC code. In our simulations, no error propagation was observed.

V. CONCLUSION

We proposed a low complexity decision feedback based scheme to compress multiterminal sources with hidden Markov correlations. The proposed scheme has thresholds just 0.03 bits away from the Slepian Wolf limits and the simulated performance with designed LDPC codes of length 100000 is within 0.08 bits of the limits which is better than the thresholds of the scheme in [5].

REFERENCES

