Microorganisms Causing Foodborne Disease

Family Vibrionaceae
- *Vibrio cholerae*
- *Vibrio parahaemolyticus*
- *Vibrio vulnificus*

Family Vibrionaceae

- Gram-negative rods
 - Straight or curved
- Motile by polar flagella
 - Except *Enhydrobacter* (non-motile)
- Facultatively anaerobic
- Fermentative
- Oxidase positive
 - Few exceptions of no importance in food microbiology
- Most have aquatic habitats

Family Vibrionaceae

- Genera
 - *Aeromonas*
 - *Enhydrobacter*
 - *Photobacterium*
 - *Plesiomonas*
 - *Vibrio*
Vibrio species of medical importance

- *V. alginolyticus*
- *V. cholerae*
- *V. cincinnatiensis*
- *V. damsella*
- *V. fluvialis*
- *V. furnissii*
- *V. harveyi*
- *V. hollisae*
- *V. metschnikovii*
- *V. mimicus*
- *V. parahaemolyticus*
- *V. vulnificus*

Morphology of Vibrio cells

- Different serogroups
 - O1 is the serogroup associated with most pandemics
 - Non-O1 can also cause diarrhea
 - O111 has acquired great importance in India, Pakistan and the Middle East
V. cholerae O1

- Human pathogen
- Typically associated with water
 - Contaminated food played an important role during the Latin American pandemic
- There have been 7 pandemics over the history
 - We are currently suffering the 7th pandemic
 - Caused by *V. cholerae* biotype El Tor
 - Serotypes Ogawa, Inaba and Hikojima

V. parahaemolyticus

- Halophilic (needs salt to grow)
 - 0.5 – 8%, optimum 2-3%
- pH
 - Grows best at values above neutrality (7.5 – 8.5)
- Min a_w is 0.937 – 0.986
 - Depending on solute
- Temperature
 - 10 – 43°C, optimum 37°C
- Grows rapidly
 - Generation time 7 – 9 min
 - Compare to GT of 20 min for enterobacteriaceae

V. parahaemolyticus

- Primarily associated with coastal inshore water
- Does not grow or survive well at water temperatures
 - <15°C or in deep waters (high pressure)
- Can survive in coastal sediments during the cold season at water temperature <10°C
- Its pathogenicity is related to a hemolysin that is detected by the Kanagawa test
 - Experimental ingestion of Kanagawa + isolates has resulted in diarrhea
 - Experimental ingestion of Ka – isolates does not produce diarrhea
V. parahaemolyticus
- *V. parahaemolytic* food poisoning
 - Incubation period 9 – 25 h
- Disease symptoms
 - Profuse watery diarrhea, fever, abdominal pain and vomiting
 - Last for up to 8 days
- Associated invariably with seafood
 - Both shellfish and finfish
- Outbreaks are occasionally reported in the U.S.
 - It is the most common cause of food poisoning in Japan

V. vulnificus
- Halophilic
- Marine habitat, coastal waters
- Highly sensitive to cold
- Isolated from coastal waters during warm seasons
 - Seldom recovered from water during cold season

Incidence of *V. vulnificus* in coastal waters by sampling month

![Incidence of V. vulnificus in coastal waters by sampling month](chart.png)

Oliver, 1987
V. vulnificus

- Highly invasive
- Syndromes:
 - Primary septicemia
 - 26 h Incubation period
 - Fatality rate (~50%)
 - Associated with eating raw oysters (85%)
 - Secondary lesions appear in patinet
 - Wound infections
 - 16 h Incubation period
 - Usually from harvesting or shucking oysters
 - Fatality rate of 22%
- Most cases occur with pre existing conditions
 - Liver disease, diabetes, alcoholism
 - High concentration of iron in serum

Effects of V. vulnificus infection

Isolation of Vibrio spp.

- Alkaline enrichment
 - Alkaline peptone water (pH 8.6 – 9.0)
 - Tellurite bile salt broth (pH 9.0 – 9.2)
- Isolation on thiosulfate citrate bile salts sucrose agar (TCBS)
 - *V. cholerae* produces acid from sucrose
 - *V. parahaemolyticus* and *V. vulnificus* do not produce acid from sucrose
 - *V. vulnificus* is differentiated from *V. parahaemolyticus* by its ability to ferment lactose
- Further biochemical and serological tests for species confirmation
Characteristics of *Vibrio* colonies on TCBS

- *V. cholerae*
- *V. parahaemolyticus*
- *V. vulnificus*