Microorganisms Causing Foodborne Disease

Staphylococcus aureus

S. aureus
- Member of the family Micrococcaceae
- Primary reservoir - animal and human body
 - 30-50% of humans are carriers
 - Throat, nose and skin
- Causes staphylococcal food poisoning
 - Caused by a heat-resistant enterotoxin produced as a result of staphylococcal growth

S. aureus
- Gram-positive, clustered cocci
- Nonmotile
- Mesophilic
- Aerobic, slow anaerobic growth
- Poor competitor in food
- Most strains produce a gold pigment
- Most strains produce coagulase and heat-stable DNase (thermonuclease or TNase)
 - Key in the ID of this organism
 - Strains that do not produce TNase and coagulase are not likely to produce enterotoxin
S. aureus

- Enterotoxins
 - A, B, C₁, C₂, C₃, D, E and H
- Properties:
 - Low molecular weight proteins
 - Single polypeptide chains
 - Resistant to proteolytic enzymes - not inactivated in digestive tract
 - Heat resistant - most heat processing will not inactivate

S. aureus

- Short incubation period
 - 1 – 8, sometimes has been as short as 30 min
 - Intoxication
- Syndrome
 - Nausea
 - Projectile vomiting
 - Continues at 5 to 20 min intervals
 - 1 to 8 hours
 - Vomits frequently blood-streaked
 - Abdominal and muscular (legs) cramping
 - Diarrhea
 - No fever
- 3.5 µg of toxin sufficient to cause illness in a 150-lb man
 - Usually associated with growth of the organism to large numbers

S. aureus

- One of the three most common cause of FBI
 - *Salmonella, Clostridium perfringens* and *S. aureus*
- Most cases due to human food handling
- Growth to high numbers necessary for sufficient toxin production
S. aureus

- Foods associated
 - Processed Meat, dairy, poultry and fish products
 - Cream sauces
 - Salads
 - Custard
 - Cream-filled bakery products
- Foods that support staphylococcal growth
- Stored under conditions that promote its growth

S. aureus

- Method of isolation
 - No detection but enumeration is important
 - Dilutions
 - Surface-spread plating onto Baird Parker agar
 - Coagulase and TNase tests
 - Sometimes an MPN method has been proposed

Baird parker agar

- Selective components
 - LiCl₂ + glycine
 - Potassium tellurite (K₂TeO₃)
- Differential components
 - K₂TeO₃ → TeO₂⁻ → Te⁰
 - Egg yolk
- Enriching components
 - Egg yolk
 - Sodium pyruvate