Microorganisms Causing Foodborne Disease

Enterobacteriaceae Family
Genus *Salmonella*

Family *Enterobacteriaceae*

- Gram-negative
- Non-sporeforming rods
- Facultatively anaerobic
- Oxidase negative
- Glucose fermentative
- Generally motile

Peritrichous flagella
Salmonella

- Named after Dr. D. E. Salmon
- First described *Salmonella cholerae-suis*
- Currently only 2 species are recognized
 - *S. bongori*
 - *S. enterica*
 - 6 subspecies
 » enterica
 » salamae
 » arizonae
 » diarizonae
 » houtenae
 » Indica

Principal biochemical characteristics

- Lactose negative
- Lysine decarboxylase positive
- H₂S positive
- Urease negative

- 0.8% of strains can ferment lactose
- A few strains do not produce H₂S

Salmonella

- Salmonellae are separated in somatic groups (O antigens) and flagellar types (H antigens)
- About 2,400 serovars (or serotypes) have been described
- Example of correct nomenclature:
 - *Salmonella enterica* subsp. *enterica* serovar Typhimurium
 - Abbreviated: *Salmonella* Typhimurium
- After having defined by full name
- Also there is a phage-based classification
 - Phage types
Growth characteristics

- Temperature
 - Minimum 7°C
 - Maximum 47°C
 - Optimum 37°C
- pH
 - Minimum
 - Acetic acid 4.7
 - HCl 4.05
 - Optimum 7.0
- aw
 - Minimum 0.93

Heat resistance

- Non-thermoduric
- S. Senftenberg 775W is heat resistant
 - D_{71} in milk = 0.09 min
 - D_{71} for S. Typhimurium in milk = 0.003 min
- Heating mestrum affects heat resistance
 - D_{70} for S. Typhimurium in chocolate sauce = 11.3 – 17.5 h.

Ecology

- Most salmonellae infect a wide range of animal species
- Some serovars are host adapted
 - S. Enteritidis PT4, S. Pullorum, S. Gallinarum in poultry
 - S. Cholerae-suis in pigs
 - S. Typhy in humans
Clinical features

- Enteritis
 - Diarrhea, nausea and fever
- Incubation period
 - 6 - 48 h
- Infectious dose
 - 1 to 10^6 cells

Pathogenesis

- Pathogenesis
 - Adhesion to epithelial cells of the ileum via mannose-resistant fimbriae
 - Bacterial uptake by host cells (endocytes)
 - Passage through epithelial cells within a vacuole, where the bacterium multiplies
 - Influx of inflammatory cells leading to the release of prostaglandins
 - Prostaglandins activate adenylate cyclase which produces fluid secretion to the intestinal lumen

Activity in foods

- Low \(a_w \) enhances the survival of *Salmonella*
 - The lower the \(a_w \) the greater the survival rate

![Survival of Salmonella in marigue powder as affected by \(a_w \)](image)
Survival of *Salmonella* in different foods

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Temperature</th>
<th>Survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter</td>
<td>-23 to 25°C</td>
<td>>10 weeks</td>
</tr>
<tr>
<td>Milk</td>
<td>Room temp.</td>
<td>6 months</td>
</tr>
<tr>
<td>Ice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various vegetables</td>
<td>2 to 4°C</td>
<td>>28 days</td>
</tr>
<tr>
<td>Chocolate</td>
<td>Room temp.</td>
<td>Months</td>
</tr>
</tbody>
</table>

Foods associated with *Salmonella* infection

- Eggs
 - *Salmonella* serovar Enteritidis
- Meat
 - *S. Typhimurium*
- Fruits and vegetables
 - *S. Montevideo* (tomatoes)
 - *S. Poona* (cantaloupes)
 - *S. Newport* (mangoes)
- Cheese
 - *S. Zanzibar*
- Chocolate
 - *S. Eastbourne*
- Milk
 - *S. Typhimurium*
 - *S. Newbrunswick*

Transmission routes

Figure 7.8 The Salmonella cycle of infection (Reproduced with permission from WHO, 1983)
S. Enteritidis
- Associated with eggs
- Present in the yolk at oviposition
- Food associated:
 - Homemade mayonnaise w/raw eggs
 - Tartar sauce
 - Egg nogg
 - Milk shakes
 - Mousse
 - Ice cream
- Control
 - Decreasing S. Enteritidis populations at the farm
 - Refrigerating eggs
 - Egg pasteurization or irradiation

S. Typhimurium DT 104
- First reported in the UK in 1984
- Increasing prevalence
- Isolated from food animals
 - As well as other domestic and wild animals
- R-factor as a natural DNA component
 - Typically resistant to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline
 - R-type ACSSuT

DT 104
- Resistant to multiple antibiotics
- UK reported case-fatality rate = 3%
 - 0.1% for other non-typhoid salmonellae
- R-type ACSSuT present in 30% of human isolates in the U. S.
 - Resistance to trimethoprim, fluoroquinones and ciprofloxacin is being reported
Outbreak of salmonellosis caused by DT 104 in the U.S.

- Nebraska, 1996
- 19 cases
 - Elementary school children
- 3 required hospitalization
- Vehicle implicated: cold chocolate milk
 - Relative Risk=8.2
- Isolates were R-type ACSSuT
- Phage typing confirmed DT 104

Isolation methods

- Methods include enrichment prior to plating on selective media
- Most methods for food analysis also include a pre enrichment
- Enrichment in a non-selective broth
 - Lactose broth
- After enrichment, a rapid method can be used
 - Immunoassays (ELISA, 1-2-3)
 - DNA probes

Isolation methods (cont.)

- If rapid method indicates + test, *Salmonella* must be confirmed by plating method
- Examples of enrichment broths
 - Tetrathionate broth
 - Selenite cystine broth
 - Rappaport-Vassiliadis
- Examples of plating media
 - Brilliant green agar
 - XLD agar (xylose lysine deoxycholate)
 - Bismuth sulfite agar
Isolation methods (cont.)
Typical colonies on plating media are subjected to identification tests
• Biochemical tests
 - TSI agar
 - LIA agar
 - Urea broth
• Serological tests
 - Polyvalent O antiserum
 - Serogrouping and serotyping